CAMEDIATE AND					
	Roll No.				
	Sig. of Cand	didate.		7	

Answer Sheet No	· · · · · · · · · · · · · · · · · · ·
Sig. of invigilator.	

MATHEMATICS HSSC-I SECTION - A (Marks 20)

Time a	allow	ed:	25	Min	utes
--------	-------	-----	----	-----	------

Version Number 1 7 0 2

NOTE: Section—A is compulsory. All parts of this section are to be answered on the question paper itself should be completed in the first 25 minutes and handed over to the Centre Superintende Deleting/overwriting is not allowed. Do not use lead pencil.	. It int.
--	--------------

Circle (i)		rect option i.e.		/ D. Each part c	arries c	one mark.		
	A.	IV	B.	I	C.	П	D.	III
(ii)		et {0,1} is close						
	A	Division	В.	Addition	C.	Subtraction	D.	Multiplication
(iii)		elongs to the s			В	Deal March		
	A. C.	Rational Num Complex Nun			B. D.	Real Numbers Integers		
(iv)		et of integers Z		under:	U.	meyers		
` '	A.	Addition	В.	Subtraction	C.	Division	D.	Multiplication
(v)				may be true or fa				
	А.	Tautology	В.	Proposition	C.	Deduction	D.	Induction
(vi)	If A =	$\begin{bmatrix} x & 1 \\ 1 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	is singula	matrix, then $x =$:			
	A.	3	В.	0	C.	1	D.	2
(vii)	The pr A.	oduct of all four	rth roots o B.		C.	0	D	4 .
(viii)		-		1 of numerator is le		•	D. denom	– 1 `inator is called:
(- ///	A.	Algebraic Rei	ation		B.	improper Fracti		
	C.	Proper Fraction	on		D.	Equation		
(ix)	$1^3 + 2^3$	$+3^3 + \dots + n^3 =$						
	Α.	$\frac{n^2(n+1)^2}{n^2(n+1)^2}$	В.	$\frac{n(n+1)(2n+1)}{6}$	C.	$\left[\frac{n(n+1)}{n(n+1)}\right]^3$	D.	$\frac{n(n+1)(2n+1)}{3}$
		•		· ·		[2]		3
(x)		nite Geometric		•				
	A.	r = -1	B.	r=1	C.	r > 1	D.	r < 1
(xi)		ent E is said to I			_		_	
	Α.	$P(E) = \infty$	В.	P(E)=0	C.	P(E)=1	D.	P(E) = -1
(xii)			· •	sion of $(a+b)^n$ is				
	A.	n^2+1	В.	n+1	C.	n-1	D.	n
(xiii)				he expansion of	$(1+x)^n$			
	Α.	2 ⁿ⁺¹	В.	n^2	C.	2 ⁿ	D.	2"-1
(xiv)	$\tan\left(\frac{37}{2}\right)$	$\left(\frac{\tau}{2} - \theta\right) =$						
	A.	$-\cot\theta$	В.	an heta	C.	- an heta	D.	$\cot \theta$
(xv)			— ·	n the terminal am	_		_	
(xvi)	A. $\sin 3\alpha$	IV =	В.	I	C.	н	D.	III
(441)	Siπ 3α ·	– 4sinα–3sin³	αR	$4\cos^3\alpha - 3\cos\alpha$	·C	$3\cos^3\alpha - 4\cos\alpha$	D	$3\sin\alpha - 4\sin^3\alpha$
(xvii)		eriod of $3\sin 3x$		7003 W-1003W	. .	5003 a -4008a	J .	J31114 - 73111 0
17.411)	•			π	_	π	_	2π
	A.	6π	B.	3	C.	$\frac{\pi}{2}$	D.	$\frac{2\pi}{3}$
(xviii)	The ra	inge of $\cot x$ is:		J		_		-
•	A.	R⁻	B.	R	C.	[-1,1]	D.	R^+
(xix)	The cli	rcle passing thr	ough the	vertices of the tria	angle is	•		
	A.	Unit circle	B.	Circum circle	C.	In-circle	D.	Escribed circle
(xx)		omain of princip						[2 _m]
	Α.	omain of princip $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	В.	$\left[0,\frac{\pi}{2}\right]$	C.	$[0,\pi]$	D.	$\left[0,\frac{3\pi}{2}\right]$
For Ex	aminer	's us e only:						
					Total N	narks:		20

Marks Obtained:

—1HA 1711 (L) ** —

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE:

Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Graph paper will be provided on request.

SECTION - B (Marks 40)

Q. 2 Attempt any TEN parts. All parts carry equal marks.

 $(10 \times 4 = 40)$

- (i) Simplify by using De Moivre's Theorem $\left(\frac{-1}{2} + \frac{\sqrt{3}}{2}i\right)^3$
- (ii) Give logical prove of the theorem $(A \cup B)' = A' \cap B'$
- (iii) Without expansion verify that $\begin{vmatrix} -a & 0 & c \\ 0 & a & -b \\ b & -c & 0 \end{vmatrix} = 0$
- (iv) Find the values of a and b if -2 and 2 are the roots of the polynomial $x^3 4x^2 + ax + b$.
- (v) Resolve into partial fractions $\frac{x^2+1}{x^3+1}$
- (vi) Insert four harmonic means between $\frac{7}{3}$ and $\frac{7}{11}$.
- (vii) Find the values of n and r, when $^{n-1}C_{r-1}: {}^nC_r: {}^{n+1}C_{r+1}=3:6:10$
- (viii) Show that the middle term of $(1+x)^{2n}$ is $\frac{1.3.5...(2n-1)}{n!}2^nx^n$.
- (ix) Prove that $\frac{\tan \theta + \sec \theta 1}{\tan \theta \sec \theta + 1} = \tan \theta + \sec \theta$
- (x) Without using table or calculator, prove that $\sin 19^{\circ} \cos 11^{\circ} + \sin 71^{\circ} \sin 11^{\circ} = \frac{1}{2}$
- (xi) Find the period of cosine function.
- (xii) The sides of the triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. Prove that the greatest angle of the triangle is 120° .
- (xiii) Show that $\cos^{-1}(-x) = \pi \cos^{-1} x$
- (xiv) Solve $\sin x + \cos x = 0$

SECTION - C (Marks 40)

Note: Attempt any FIVE questions. All questions carry equal marks.

 $(5 \times 8 = 40)$

Q. 3 Use matrices to solve the following system

$$x+y = 2$$
$$2x-z = 1$$
$$2y-3z = -1$$

Q. 4 Show that the roots of equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are real.

Also show that the roots will be equal only if a = b = c.

- Q. 5 Show that the sum of n A.Ms between a and b is equal to n times their A.M.
- **Q. 6** Expand $\frac{(4+2x)^{\frac{1}{2}}}{2-x}$ up to 4 terms.
- **Q. 7** Prove that: $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$
- **Q. 8** Prove that in an equilateral triangle $r: R: r_1 = 1:2:3$
- Q. 9 Solve the equation $\cos ecx = \sqrt{3} + \cot x$

AMEDIATE AND A				 	
STATE OF THE PARTY	Roll No.				
THE STATE OF THE S	Sig. of Can	didate	e		

Answer Sheet No	
Sig. of Invigilator.	

				HEMATIC TION – A (
allowe	ed: 25 M	linutes					sion l	Number 1	7 0	5
sno	ula pe co	ompleted in	the firs	of this section t 25 minutes . Do not use lea	and ha	inded over to	on the	question pa Centre Sup	per itsel erintend	f. en
Circle	the correc	ct option i.e.	A/B/C	/ D. Each part o	arries c	one mark.		·		_
(i)	$\sqrt{3}$ is:	•								
(ii)	C, A	Odd Number An Irrational N e of <i>i</i> in order		s:	B. D.	Comlex Numb Rational Num				
, ,		(0,0)	В.	(1,0)	C.	(0,1)	D.	(-1,0)		
(iii)	The func	tion from A to		d on to function		ge is:				
	Α, Α		B.	В	C.	A – B	D.	$A \cup B$		
(iv)	A. <i>A</i>	\ddition	В.	is group under Subtraction	C.	ry operation: Multiplication	D.	Division		
(v)	If $A = \begin{bmatrix} x \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and A is	singular	matrix, then $x =$	=					
(vi)	A. C		В.	1	C.	- 1	D.	2		
		$-3, -3\omega, -3\omega^2$		$3,3\omega,3\omega^2$	C,	$9,9\omega,9\omega^2$	D.	$3, \omega, \omega^2$		
(vii)	A. <i>A</i>	$x^2 + 4x + 4$ is: A linear equation			В.	Cubic equatio	n			
(viii)	No term	An identity of the geometi	ic seque	nce is:	D.	An Equation				
(ix)	A. 1 ${}^{4}C_{4} =$		B.	2	C.	0	D.	3		
(x)	A. 4 An event	l is said to be i	B. mpossibi	16 e if:	C.	1	D.	8		
	Α.	P(E)=1	B.	$P(E) = \frac{1}{2}$	C.	P(E)=0	D.	$P(E) = \infty$		
(xi)		lle term in the 3rd		on of $(1+2x)^6$ is:		mu.	_			
(xii)			B. ients in ti	4th ne expansion of	C. (1 ⊥ ~\³ le	5th	D.	3rd and 4	th	
()	A. 8		В.	4	(1 + x) is C.	12	D.	16		
(xiii)		igle is quadrer	ntal angle	?				-		
		.20°	B.	270°	C.	60°	D.	45°		
(xiv)	1° ≈ A. 1	radian	D.	O E radia-	C	0.04745	. r	0.5 11	_	
(vu)			B.	0.5 radian	C.	0.01745 radia		2.5 radiar	1	
(xv)	A. I		< 0,then B.	the terminal arr	n of angl C.	le lies in the qu III	adrant: D.	IV		
(xvi)		e of cot x is:			J .	***	D.	1 V		
	_	-1,1]	B.	R	C.	R^{+}	D.	R^{-}		
(xvii)		f inscribed circ	le is:							
	A. r	$r = \frac{\Delta}{S}$	В.	$r = \frac{abc}{abc}$	C.	$r = \frac{S}{\Lambda}$	D.	$r = \frac{\Delta}{-}$		
(xviii)		ຣິ rse of a functio	n is func	4Δ tion if it is:		Δ		S-a		
(xix)	A. C	On to ain of principa	В.	One-One	C.	Bijective	D.	in-to		
	A.	$0,\frac{\pi}{2}$	B.	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	C.	$[0,2\pi]$	D.	R		
(xx)	_	2] e angle lies in	quadran	L						
,	A. I		B.	II	C.	III	D.	IV		
For Ex	aminer's	use only:			Total B	(lorke)		20		
					Total N	ndrK5;	-	20		

Marks Obtained:

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE: Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Graph paper will be provided on request.

SECTION - B (Marks 40)

Q. 2 Attempt any TEN parts. All parts carry equal marks.

 $(10 \times 4 = 40)$

- (i) Find out real and imaginary parts of $(\sqrt{3} + i)^3$ by using De Moivre's theorem.
- (ii) Without expansion show that $\begin{vmatrix} x & a+x & b+c \\ x & b+x & c+a \\ x & c+x & a+b \end{vmatrix} = 0$
- (iii) If the roots of $px^2 + qx + q = 0$ are α and β then prove that: $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{q}{p}} = 0$
- (iv) Resolve $\frac{x^4}{1-x^4}$ in to partial fractions.
- (V) If $a = 1 x + x^2 x^3 + ...$ and $b = 1 + x + x^2 + x^3 + ...$, and |x| < 1. Show that 2ab = a + b
- (vi) Sum to n terms the series 0.2 + 0.22 + 0.222 + ...
- (vii) How many signals can be made by 4 different flags when any number of them is to be used at a time?
- (viii) Find the term involving y^3 in the expansion of $\left(x \sqrt{y}\right)^{11}$.
- (ix) Find the value of trigonometric functions of the angle $\frac{-71\pi}{6}$
- (x) Reduce $\cos^4 \theta$ to an expression involving only function of multiples of θ raised to the first power.
- (xi) Find the period of cosine function.
- (xii) Prove that $R = \frac{abc}{4\Delta}$
- (xiii) Show that $Cos^{-1}(-x) = \pi Cos^{-1}x$
- (xiv) Find the value of θ satisfying the equation $4\sin^2\theta 8\cos\theta + 1 = 0$

SECTION - C (Marks 40)

Note: Attempt any FIVE questions. All questions carry equal marks.

 $(5 \times 8 = 40)$

- **Q. 3** Show that the set $S = \{1, -1, i, -i\}$ is an abelian group under multiplication.
- **Q. 4** Solve the equation $x^2 \frac{x}{2} 7 = x 3\sqrt{2x^2 3x + 2}$
- Q. 5 If three consecutive numbers in A.P are increased by 1, 4, 15 respectively, the resulting numbers are in G.P. find the original numbers if their sum is 6.
- **Q. 6** If $2y = \frac{1}{2^2} + \frac{1.3}{2!} \cdot \frac{1}{2^4} + \frac{1.3.5}{3!} \cdot \frac{1}{2^6} + \dots$, then prove that $4y^2 + 4y 1 = 0$
- Q. 7 If α, β and γ are the angles of a triangle ABC, then prove that $\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} = \cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\beta}{2} = \cot \frac{\beta}{2} + \cot \frac$
- **Q. 8** Prove that $r_1 + r_2 + r_3 r = 4R$
- **Q. 9** Find the rank of the matrix $\begin{bmatrix} 1 & -1 & 2 & -3 \\ 2 & 0 & 7 & -7 \\ 3 & 1 & 12 & -11 \end{bmatrix}$